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A note on shear flow past a sphere 

By R. R. COUSINS 
Division of Numerical and Applied Mathematics, 

National Physical Laboratory, Teddington 

(Received 27 March 1969) 

Flow of an incompressible inviscid fluid past a sphere is considered, where the 
flow upstream consists of a slight shear flow superimposed on a uniform stream. 
Secondary vorticity, produced by deformation of vortex elements as they are 
carried past the sphere, is determined by a method due to Lighthill (1956b). 
Components of vorticity are calculated from a drift function for which expressions 
were previously available only in part of the flow field. For the region in which 
no expansion is valid an exact integral expression is obtained to replace the rough 
numerical approximation used by Lighthill (1956 b).  The velocity distribution 
over the upstream part of the sphere is determined numerically using a Biot- 
Savart law. These results are required for the calibration of certain forms of 
Pitot tubes. 

1. Introduction 
Use of Pitot tubes in non-uniform flow fields has prompted a more detailed 

study of flow with slight shear past blunt objects. In  particular Hall (1956) and 
Lighthill (1957 b )  have investigated how the addition of a parallel shear flow to 
a uniform stream affects the measurement of pressure. They found that the 
measured value is greater than that on the streamline which approaches along 
the axis of the tube; it is equal to the pressure on a streamline displaced by a 
certain amount in the direction of higher velocities. The manner in which this 
displacement effect modifies measurements of speed is discussed in the papers 
cited above. 

In recent years Pitot tubes ha,ve been developed to measure direction of flow 
as well as speed. One such instrument, the Warden tube, consists of a hemi- 
sphere mounted on a cylindrical shaft. Pressure readings can be taken from five 
holes located on the hemisphere; speed and direction of flow are then obtained 
either from experimental calibration or by calculation. However, this calibra- 
tion or calculation is commonly done assuming uniform flow conditions. This 
will lead to wrong deductions being made from measured pressures when the 
instrument is used in a shear flow such as a wake or a boundary layer, and there- 
fore a more detailed analysis is necessary 

The displacement of the stagnation streamline and the velocity field in the 
neighbourhood of the upstream stagnation points have been determined in the 
work already cited. For instruments like the Warden tube, however, knowledge 
of the velocity field is required over a larger region of the head of the tube. In 
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$ 2  the method developed by Lighthill (1956b) is used to determine velocities 
over most of the hemispherical head; an exact expression is derived to replace 
a rough numerical approximation used previously. Numerical results are given 
in 3 3, and their application to the Calibration of Warden tubes is discussed in 
some detail by Cousins (1969) . 

2. Calculation of the velocity field 
We assume that it is adequate to represent the tube by a sphere and, using 

Cartesian co-ordinates x, y, z, we define a flow with constant shear by a velocity 

where U and A are constant. No exact solution to the flow past a sphere with 
this condition upstream has been found, but since the shear parameter AalU,  
where a is the radius of the sphere, is small in most practical applications, we 
obtain a first approximation 

to the velocity, where v, is uniform incompressible flow past a sphere and v, is 
derived from knowledge of vorticity w via a Biot-Savart law 

v = ( U + A y , O , O ) ,  (1) 

v = v ,+(Au/U)V,  (2) 

1 
v,(r’) = -- w(r) AV ~- - d V ;  

lrl-I-1 (3)  

the integration being performed over the volume outside the sphere. 
As we only require details of the flow on the upstream part of the sphere, where 

the boundary layer is thin, we neglect viscosity and assume that the pressure 
on the sphere is given accurately by considering inviscid flow. Lighthill (1957 b )  
shows that vorticity downstream of the sphere contributes little to the displace- 
ment effect. This supports the view that a Pitot tube, with a shaft downstream, 
can be represented adequately by a sphere, a t  least for the upstream effects. 
This conclusion is strengthened by the work of Wellicome (1967), who shows 
that experimental calibration of a Warden tube in conditions of uniform flow 
agrees closely with the theoretical calculaJtion of uniform incompressible flow 
past a sphere. 

We follow the approach developed by Lighthill (1956n, b ) .  To avoid a divergent 
integral the vorticity is split into two parts; its value far upstream and the change 
from that value as vortex elements are carried past the sphere. Further terms 
must be added to  (3) to ensure that the flow remains incompressible and the 
boundary condition on the sphere is satisfied. These extra terms may be derived 
from an image vorticity system. To determine vorticity we introduce a drift 
function t ,  defined by integrating 

along a streamline of the primary flow v,,, where vr and vo are velocity components 
of the primary flow with respect to  spherical polar co-ordinates r ,0 ,h .  Com- 
ponents of vorticity are then obtained from U at/@,, where 

( 5 )  pX = r2 sin2 O( 1 - a3/r3) 
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defines streamlines of the primary flow for po = constant. Various asymptotic 
expansions for U atlap, have been obtained in the references cited. There remains, 
however, a large intermediate region of the flow field for which no such expansion 
is valid. We now derive an exact expression to replace the rough numerical 
approximation used previously. To avoid a divergent integral we write (4) in the 
form 

{ ( 1 rcosecO + a3/2r3 )Id8, 
U dt = -pa cosec2 8 + po cosec2 8 - 

from which we obtain 
r cosec 0 
I + a3121-3 

the integration being performed along a streamline of the primary flow. Differ- 
entiating with respect to po keeping 8 constant we obtain 

(1  + 2u3/r3)\ 
r 1 -a3/r3 

po  (1 + a3/2r3)3 I cosec28-cosec8- 

where the expression in square brackets is aejar with pa constant for 8 > &T. 
If we now substitute k = air, (8) becomes 

where po is constant during the integration. For 8 < +7r values of Uatlap, are 
obtained from its values for 8 > +7r through the relation 

t(p07 e, = 2t(pO> in) - t(p07 - O). (10) 

3. Numerical results of the secondary velocity calculation 
Components of secondary velocity on the surface of the sphere were obtained 

using a digital computer; a five-point Newton-Cotes formula was used in the 
integration. The computer program guarantees an accuracy to one decimal 
place with the tolerance used in this calculation, though the program is s u e -  
ciently precise for the next figure to  be reliable unless the integrand is particularly 
badly behaved. The results displayed in table 1 are therefore given to two decimal 
places. The boundary condition on the sphere, that the secondary velocity has 
a zero radial component, is satisfied to an accuracy of 0.01, as are the symmetries 

w~,(A)  = vIz( - A )  = - vl2( 180 - A )  = - v1,(A - 180)) 

vlu(A) = vlV( - A )  = vlu( 180 - A )  = vIv(A - 180), 

v1,(A) = - 2)lo( -A) = v12( 180 - A )  = - w,(A - 180), 

where A is expressed in degrees. The second decimal place is therefore unlikely 
to be in greater error than one digit. I n  any case the values obtained for v, have 
to be multiplied by the small parameter AulU. 
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The limits of integration were varied and it was found that the contribution 
to the velocity from field points at  a greater distance than 50a from the centre 
of the sphere was negligible, so that the upper limit for integration with respect 
to r was finally taken as 50a. It was also confirmed that downstream vorticity 
contributed only a small fraction to the velocity, a result which was obtained 
by Lighthill (1957 b ) .  The value of vly at  ( - a,  0 , O )  is - 0.97, and the displacement 
of the upstream stagnation point on the sphere is 

lim ( r  sin 8)  = 0-65 Aa2/ u, 
r-ta 

in agreement with Lighthill. It may be seen from table 1 that the maximum 
value of (vl[ is approximately unity, and, as components of v1 have to be multi- 
plied by the shear parameter, the results are consistent with a first-order solution 
in Aa/U.  

Practical use of these results for correcting readings obtained from a Pitot 
tube is discussed by Cousins (1969). Typical graphs of vorticity components are 
also given there. 

The work reported here was done as part of the research programme of the 
National Physical Laboratory. 
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